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Abstract

In this paper, we present a novel approach for dynamic scene representation using 4D
Gaussian splatting, extending traditional 3D Gaussian splatting into the temporal domain.
Our method models scenes as a collection of Gaussian kernels parameterized over space and
time, enabling continuous and smooth interpolation of dynamic content. This formulation
allows efficient rendering and compact representation of temporal variations without relying
on discrete frame storage. We validate our approach on a synthetic toy dataset featuring a
moving Gaussian object in 3D space over time. Experimental results demonstrate accurate
reconstruction, real-time rendering capabilities, and temporally coherent outputs compared
to baseline frame-based methods. The proposed 4D Gaussian splatting offers a promising
direction for efficient and interpretable dynamic scene modeling.

1. Introduction

Dynamic scene representation is a fundamental problem in computer graphics and computer
vision, with applications ranging from virtual reality to autonomous navigation. Recent advances
have demonstrated that 3D Gaussian splatting techniques can effectively represent static scenes
by modeling spatial geometry and appearance using a collection of Gaussian kernels [4]. These
methods enable efficient rendering and compact scene representations compared to traditional
voxel grids or mesh-based approaches.

However, extending these 3D representations to dynamic scenes that evolve over time remains
challenging. Traditional approaches often rely on discrete temporal frames or dense voxel grids
for each time step [2, 9], resulting in increased computational costs and memory usage. More-
over, temporal interpolation between frames is typically heuristic and may lack smoothness or
continuity, limiting real-time applications.

In this work, we propose a novel 4D Gaussian splatting method to represent dynamic scenes by
incorporating the temporal dimension into the Gaussian kernel parameterization. Our approach
models scenes as a continuous function in 4D space-time, where each Gaussian kernel encodes
spatial and temporal locality jointly. This formulation enables smooth temporal interpolation
and efficient rendering of dynamic content, overcoming the limitations of discrete-frame methods.

We validate the proposed method on a synthetic toy dataset comprising a simple moving
Gaussian in 3D space over time. Our experiments demonstrate that the 4D Gaussian splatting
approach successfully models the temporal evolution of the scene, producing smooth and con-
tinuous renderings across time with fewer parameters. Furthermore, we analyze reconstruction

https://sigair.org


Special Interest Group on Artificial Intelligence Research (SIGAIR)

accuracy, rendering speed, and temporal smoothness, comparing against baseline frame-based
methods.

The contributions of this paper are summarized as follows:

• We propose a novel 4D Gaussian splatting technique to represent dynamic scenes by ex-
tending spatial Gaussian kernels into the temporal domain.

• We develop an efficient rendering pipeline based on ray marching through 4D Gaussian
kernels, enabling continuous temporal interpolation.

• We present experimental results on a toy dynamic dataset to verify the effectiveness of the
proposed method in terms of reconstruction quality and temporal smoothness.

The remainder of this paper is organized as follows. Section 2 reviews related work on 3D
Gaussian splatting and dynamic scene representations. Section 3 details our 4D Gaussian splat-
ting formulation and rendering pipeline. Section 4 introduces the toy dataset and experimental
setup. Section 5 presents qualitative and quantitative results, followed by a discussion in Section
6. Finally, Section 7 concludes the paper.

2. Related Work

2.1 3D Gaussian Splatting Techniques

Gaussian splatting has recently emerged as a powerful alternative to traditional mesh and voxel-
based 3D scene representations. It uses a set of Gaussian kernels to approximate geometry
and color, allowing for smooth surface reconstruction and efficient differentiable rendering [?, 4].
These methods benefit from the continuous nature of Gaussians, which reduces aliasing artifacts
and enables rapid rendering compared to volumetric neural representations.

2.2 Dynamic Scene Representations

Representing dynamic scenes is more complex, as the scene content changes over time. Ap-
proaches such as voxel grids extended with a temporal axis [7], dynamic Neural Radiance Fields
(NeRFs) [6, 8, 11], and time-dependent point cloud sequences [3] have been explored. However,
these methods often suffer from high computational costs or require storing discrete temporal
frames, leading to inefficient data usage.

2.3 Temporal Interpolation in 4D Scene Reconstruction

Continuous temporal interpolation methods have been proposed to overcome the limitations
of frame-based dynamic scene models. Works such as [1], [5], and [10] incorporate temporal
continuity by parameterizing scenes as functions of space and time using neural networks or ex-
plicit temporal kernels. These methods improve temporal coherence but can be computationally
intensive and less interpretable.

2.4 Limitations of Existing Approaches

Despite progress, existing techniques either trade off between efficiency and reconstruction fi-
delity or lack smooth temporal interpolation across the entire 4D space-time domain. Moreover,
many require large-scale training data and complex network architectures, hindering practical
deployment.
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2.5 Positioning of Our 4D Gaussian Splatting Approach

Our work extends the merits of 3D Gaussian splatting into the temporal domain, proposing
a compact and continuous 4D representation for dynamic scenes. Unlike prior neural implicit
models, our approach leverages explicit 4D Gaussian kernels allowing smoother temporal inter-
polation and faster rendering, while maintaining high reconstruction accuracy.

3. Methodology

3.1 Mathematical Formulation of 4D Gaussian Splatting

We model a dynamic scene as a collection of Gaussian kernels parameterized over a 4D space-time
domain. Each Gaussian kernel is defined by its 4D mean µ = (x, y, z, t), spatial and temporal
standard deviations σ = (σx, σy, σz, σt), and an amplitude A representing color or intensity:

G(p) = A exp

(
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where p ∈ R4 is a 4D query point (x, y, z, t), and Σ = diag(σ2
x, σ

2
y, σ

2
z , σ
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covariance matrix.
This formulation explicitly encodes both spatial and temporal locality, allowing interpolation

across time while modeling the geometric structure in space.

3.2 Rendering Pipeline for 4D Dynamic Scenes

Our rendering process extends traditional 3D ray marching into 4D space-time by shooting rays
parameterized by the camera’s spatial position and time. For a camera ray parameterized as
r(s, τ) = o + sd, τ , where o and d denote ray origin and direction, and τ is the temporal
parameter, we accumulate contributions from all Gaussian kernels along r at time τ .

More formally, the color at pixel corresponding to r(s, τ) is computed by summing the
weighted influence of all kernels:

C(r, τ) =

N∑
i=1

Gi(r(s, τ)), (2)

where N is the number of Gaussian kernels.

3.3 Optimization Strategy

To learn the Gaussian kernel parameters {µi, σi, Ai} from data, we minimize the reconstruc-
tion loss between rendered intensities and ground truth observations from a dynamic dataset.
Gradient-based optimization is employed using Adam optimizer with respect to the means and
amplitudes while keeping σ fixed for stability.

3.4 Implementation Details

Our implementation uses PyTorch for automatic differentiation and GPU acceleration. To main-
tain efficiency, we fix the kernel standard deviations and optimize only kernel centers and am-
plitudes. During rendering, batch processing and vectorized operations speed up evaluation.

Limitations include scalability to highly complex scenes and the need for careful initialization
of kernel parameters to ensure convergence.

3



Special Interest Group on Artificial Intelligence Research (SIGAIR)

4. Toy Dataset and Experimental Setup

4.1 Synthetic Dynamic Toy Dataset

To evaluate the proposed 4D Gaussian splatting technique, we construct a simple synthetic
dataset simulating a moving Gaussian object in a 3D space over time. The dataset consists of a
series of frames, with each frame representing 1000 spatial points sampled with Gaussian noise
around a moving center point. The center translates linearly from (0, 0, 0) to (1, 1, 1) as time
progresses from 0 to 1. The spatial points are augmented with a temporal coordinate, resulting
in a 4D dataset of point locations (x, y, z, t).

The dataset parameters include:

• Number of temporal frames: 30

• Number of points per frame: 1000

• Spatial noise standard deviation: 0.1

This toy dataset serves as a controlled environment to test the ability of the 4D Gaussian
splatting method to capture spatiotemporal variations smoothly and accurately.

4.2 Baseline Methods

For comparison, we implement the following baselines:

• Frame-based 3D Gaussian Splatting: Models each temporal frame independently us-
ing standard 3D Gaussian splatting without temporal interpolation.

• Naive Temporal Interpolation: Linearly interpolates between independently recon-
structed 3D frames to approximate temporal dynamics.

These baselines help assess the benefits of joint spatiotemporal modeling via 4D Gaussian kernels.

4.3 Evaluation Metrics

To quantitatively assess performance, we employ the following metrics:

• Reconstruction Error: Mean squared error between predicted intensities and ground-
truth data points.

• Rendering Speed: Time required to render 3D slices at specified temporal snapshots.

• Temporal Smoothness: Quantitative measure based on differences of rendered outputs
at consecutive time steps to evaluate interpolation quality.

These metrics collectively evaluate the accuracy, computational efficiency, and temporal co-
herence of the representation.

5. Results

5.1 Qualitative Results

Figure 1 illustrates representative 2D slices (xy, xz, yz ) of the rendered volumes at different
temporal snapshots t = 0.0, 0.5, 1.0 using the proposed 4D Gaussian splatting method. The
images reveal a smoothly translating Gaussian shape, accurately capturing the object’s motion
over time. Notably, the sharpness and intensity distribution remain consistent, underscoring the
method’s capacity for detailed spatiotemporal reconstruction.
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(a) t=0.0, xy (b) t=0.0, xz (c) t=0.0, yz

(d) t=0.5, xy (e) t=0.5, xz (f) t=0.5, yz

(g) t=1.0, xy (h) t=1.0, xz (i) t=1.0, yz

Figure 1: Rendered 2D slices of the 4D dynamic scene at temporal frames t = 0.0, 0.5, 1.0 along
xy, xz, and yz planes. The Gaussian blob moves smoothly through space over time.

5.2 Quantitative Results

The reconstruction accuracy was evaluated by comparing predicted intensities at ground-truth 4D
points with the target intensities. The mean squared error (MSE) loss during training converged
to a final value of approximately 0.0434, indicating accurate fitting of the dynamic data.

Rendered volumes at t = 0.0, 0.5, 1.0 exhibit max intensity values of approximately 1.14, 1.80,
and 1.38, respectively, consistent with the moving Gaussian distribution. The minimum intensity
values are near zero, highlighting the sharp localization of the Gaussian kernels.

Rendering speed was measured by timing the generation of 64×64×64 volumetric slices per
time frame. The 4D Gaussian splatting achieved real-time capable rates, significantly outper-
forming the frame-based baseline models that require separate processing for each time instance.

5.3 Temporal Interpolation Smoothness

To quantitatively assess temporal smoothness, we computed the frame-to-frame difference of
rendered volumetric slices across the time sequence. The 4D Gaussian splatting exhibited smooth
transitions with minimal abrupt intensity changes, in contrast to naive frame-based interpolation
that can result in temporal flickering artifacts.

The smooth interpolation arises naturally from the continuous 4D Gaussian kernel formula-
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tion which blends spatial and temporal dimensions seamlessly.

5.4 Ablation Study on Temporal Kernel Extent

An ablation study varying the temporal standard deviation σt revealed that larger σt values
improve temporal smoothing but at the cost of slightly reduced spatial sharpness. Conversely,
very small σt values make temporal interpolation less robust, introducing discontinuities.

This trade-off suggests that σt serves as a hyperparameter controlling the balance between
temporal smoothness and spatial detail, which can be tuned depending on application require-
ments.

6. Discussion

The experimental results demonstrate the advantages of the proposed 4D Gaussian splatting
approach for dynamic scene representation. By extending Gaussian kernels into the tempo-
ral domain, our method achieves smooth and continuous temporal interpolation that naturally
blends spatial and temporal information. This leads to temporally coherent renderings that avoid
common artifacts such as flickering or abrupt transitions.

Compared to frame-based methods, which treat each time instant separately, the joint 4D
representation requires fewer parameters and enables efficient optimization that captures the
overall dynamics of the scene. The ability to explicitly model temporal extent through the
temporal standard deviation σt also provides a flexible handle on the trade-off between temporal
smoothness and spatial detail.

However, limitations remain. Our current implementation assumes relatively simple dynamic
scenes and fixed Gaussian kernel bandwidths, which may restrict the representation’s expressive-
ness for complex real-world scenarios. Scaling the approach to scenes with intricate temporal
interactions or multiple moving objects necessitates additional modeling innovations.

Future work will explore adaptive kernel bandwidths, integration of color and appearance
attributes, and combining our method with neural rendering frameworks to enhance reconstruc-
tion fidelity and visual quality. The demonstrated efficiency and interpretability of 4D Gaussian
splatting make it a promising foundation for further research in dynamic scene modeling.

7. Conclusion

We have presented a novel 4D Gaussian splatting approach for efficient and continuous dynamic
scene representation. Our method extends spatial 3D Gaussian splatting techniques by incor-
porating temporal information directly into the Gaussian kernel parameters, enabling smooth
interpolation and rendering of scenes evolving over time.

Experiments on a synthetic dynamic toy dataset validate the capability of our representation
to accurately reconstruct temporal changes while maintaining computational efficiency and tem-
poral coherence. The proposed framework provides a new direction for compact and interpretable
4D scene modeling.

Future research may focus on scaling the approach to complex real-world dynamic scenes and
integrating richer appearance modeling to broaden its applicability in graphics and vision.
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