
Special Interest Group on
Artificial Intelligence Research

https://sigair.org

Investigating the Impact of Hierarchical Decomposition in
Reinforcement Learning on a Toy Navigation Task
Anurag Sharma1, Shikha Singh2, Amitabh Chakraborty1, and Rohit Verma3

1Department of Computer Science, Indian Institute of Technology, Delhi, India
2Institute of AI Research, National University of Singapore, Singapore

3School of Robotics, Korea University, Seoul, Korea

Abstract
Hierarchical Reinforcement Learning (HRL) provides promising techniques for decomposing com-

plex tasks into subproblems, facilitating efficient learning and exploration. This paper investigates the
influence of a two-level hierarchical reinforcement learning agent compared to a flat RL baseline on a
deterministic grid-world navigation task. Experimental results demonstrate that the hierarchical agent
significantly outperforms the flat agent in learning speed and success rates in sparse reward environ-
ments. This study provides empirical insights into the benefits of hierarchy in reinforcement learning
through controlled toy experiments.

1. Introduction

Reinforcement Learning (RL) has emerged as a powerful framework for sequential decision making and
control problems [13]. Despite significant advances, RL algorithms often suffer from inefficiencies in
learning and challenges in tasks requiring long-term planning and exploration [5]. Hierarchical Rein-
forcement Learning (HRL) addresses these challenges by decomposing tasks into hierarchically struc-
tured subtasks, enabling agents to learn policies at multiple levels of temporal abstraction [1, 9].

The core idea behind HRL is that a high-level policy can select subgoals or options, which a low-level
policy then executes, potentially improving learning speed and policy robustness [2]. Despite promis-
ing theoretical and empirical results, the impact of different hierarchy levels on learning efficiency and
policy quality remains insufficiently explored, especially in simple controlled settings that allow clear
interpretation of results.

This paper investigates the influence of hierarchical decomposition in reinforcement learning on a toy
navigation task. We design a two-level HRL agent where the high-level policy selects subgoals and the
low-level policy learns to reach these subgoals. We compare the HRL agent to a conventional flat RL
baseline on a grid-world navigation environment.

Our experiments demonstrate that the hierarchical agent converges significantly faster and achieves
substantially higher success rates than the flat baseline, empirically supporting the hypothesis that hierar-
chy facilitates learning in complex exploratory scenarios. This work contributes an empirical analysis of
hierarchy benefits in RL using interpretable toy environments, laying groundwork for future studies on
multi-level abstractions in RL.

The rest of the paper is organized as follows. Section 2 reviews relevant literature on HRL and flat
RL. Section 3 details the environment and agent designs. Section 4 describes the experimental setup.
Section 5 presents results and discussion. Finally, Section 6 concludes the paper and outlines future
work.

https://sigair.org


Special Interest Group on Artificial Intelligence Research (SIGAIR)

2. Related Work

Hierarchical Reinforcement Learning (HRL) has been a vibrant area of research aimed at improving the
scalability and efficiency of RL by exploiting task decomposition across multiple temporal or spatial
resolutions [1, 16]. Early foundational frameworks such as the options framework [14] and feudal RL [2]
formalized the concept of temporally extended actions or sub-policies that enable higher-level decision
making.

Recent advancements have focused on automatic discovery of subgoals [9, 15] and learning modular,
reusable skills [8]. HRL has found applications across complex domains including robotic manipulation
[10], video game playing [6], and navigation tasks [9]. The hierarchical decomposition allows agents to
plan over higher-level abstractions, reducing the effective horizon and facilitating exploration in sparse
reward settings.

In contrast, flat RL methods, which learn a single monolithic policy, often encounter difficulties in
such environments due to the large state-action space and credit assignment over long horizons [5, 7].
Although recent deep RL algorithms have achieved impressive results, they generally require extensive
training data and struggle with sample efficiency when tackling hierarchical tasks [11, 4].

Toy environments such as grid-worlds and maze navigation [3, 12] have been employed in prior work
to analyze fundamental properties of HRL algorithms. These simplified domains allow controlled ex-
perimentation on hierarchical policy structures and provide insight into benefit mechanisms of hierarchy
before scaling to complex real-world tasks.

Our study builds on this tradition by comparing a two-level HRL agent with a flat RL baseline on a
navigation grid-world, focusing on learning speed, convergence, and success metrics. This complements
prior work by quantifying the impact of hierarchy presence and subgoal selection strategy in a well-
defined experimental setting.

3. Methodology

3.1 Toy Navigation Environment

We consider a two-dimensional grid-world environment of fixed size N ×N as the testbed for our exper-
iments. The agent starts from the top-left corner at coordinate (0, 0) and aims to reach the bottom-right
goal state at (N − 1, N − 1). At each time step, the agent executes one of four discrete actions: move up,
down, left, or right. The environment is deterministic, and movements resulting in collisions with grid
boundaries do not change the agent’s position. Episode termination occurs when the agent reaches the
goal or after a fixed maximum number of steps, Tmax. Rewards are sparse with a positive reward upon
reaching the goal and a small negative step penalty to encourage efficient navigation.

3.2 Hierarchical Reinforcement Learning Agent

The hierarchical agent follows a two-level structure comprising a high-level policy and a low-level policy.
The high-level policy operates at a temporal abstraction scale, selecting subgoals within the grid-world
for the low-level policy to reach. Specifically:

• High-level Policy: Receives the current environmental state represented as a flattened one-hot grid
tensor and outputs a discrete action corresponding to a selected subgoal coordinate (except the start
state). The subgoal space covers all reachable non-start states in the grid.

• Low-level Policy: Receives an augmented observation that concatenates the flattened current state
representation with the normalized coordinates of the active subgoal. It outputs primitive navigation
actions to move the agent toward the subgoal.

2



Special Interest Group on Artificial Intelligence Research (SIGAIR)

The low-level policy executes for a fixed number of steps or until the subgoal is reached, whichever
occurs first. Both policies are implemented as deep Q-networks trained via temporal difference learning
with replay buffers. Separate target networks are maintained for stabilization.

3.3 Flat Reinforcement Learning Agent

The flat baseline agent employs a single deep Q-network mapping directly from the flattened grid state
to primitive actions. It is trained with the same reward structure and environment dynamics, but without
hierarchical decomposition or subgoal selection. This setup allows comparison of hierarchical versus
monolithic learning approaches under identical conditions.

3.4 Training Protocols and Experimental Parameters

Both agents are trained for a fixed number of episodes with equivalent hyperparameters where applicable,
including discount factors, learning rates, and batch sizes. Exploration is controlled via an ϵ-greedy policy
with exponential decay. Replay buffers store transitions for mini-batch optimization. Target networks are
updated periodically.

3.5 Evaluation Metrics

We evaluate agent performance by tracking: (i) learning curves showing cumulative episode rewards over
training, (ii) convergence speed measured by the rate at which success in reaching the goal stabilizes, and
(iii) success rate defined as the proportion of episodes where the agent reaches the goal within the step
limit. These metrics together provide insight into learning efficiency and policy quality.

4. Experimental Setup

4.1 Grid-world Environment Specifications

We implemented the environment as a deterministic grid-world of size 5 × 5, where the agent moves in
four discrete directions: up, down, left, and right. The agent always starts from (0, 0) and aims to reach
the goal at (4, 4). Each episode allows a maximum of 50 steps. The reward function provides +1 on
reaching the goal and -0.1 per step to encourage shorter paths.

4.2 Implementation Details

All agents are implemented in Python using the PyTorch library for deep learning. The hierarchical agent
comprises two deep Q-networks (DQN) corresponding to high-level and low-level policies, with fully
connected layers of size 64 neurons and ReLU activations. The flat agent uses a similar DQN architecture
adapted for primitive action outputs.

Replay buffers store up to 10,000 experience tuples, with mini-batch sizes of 64 for training. The
discount factors are 0.95 for the high-level and 0.99 for the low-level policies, to account for their different
temporal scales, while the flat agent uses 0.99. Both agents employ Adam optimizers with a learning rate
of 10−3.

Exploration is governed by an epsilon-greedy policy with initial ϵ = 1.0, decaying exponentially to
0.05 over 300 episodes. Target networks are updated after each training episode to stabilize learning.

The hierarchical agent selects a subgoal every 5 low-level steps or upon reaching the current subgoal
or the global goal. The subgoal space includes all grid positions except the start state.

3



Special Interest Group on Artificial Intelligence Research (SIGAIR)

4.3 Experimental Procedure and Data Collection

We train each agent for 300 episodes, recording total episode rewards and the number of successful goal
reaches. The success rate over episodes is calculated as the fraction of episodes where the agent reaches
the goal within the step limit.

To evaluate and compare performance, we analyze learning curves showing cumulative episode re-
wards, convergence speed measured by the episode at which success rate stabilizes, and final success
rates.

The training code and scripts are made available along with output plots to ensure reproducibility.

5. Results

5.1 Learning Curve Comparison

Figure 1 depicts the learning curves of the hierarchical and flat RL agents over 300 training episodes.
The hierarchical agent exhibits significantly faster improvement in cumulative episode rewards, achiev-
ing near-optimal navigation after approximately 100 episodes. In contrast, the flat agent fails to make
meaningful progress, with cumulative rewards fluctuating near zero throughout training.

Figure 1: Learning curves of the Flat RL agent and the Hierarchical RL agent on the 5 × 5 grid-world
navigation task, showing cumulative episode rewards over training episodes.

5.2 Convergence Speed Analysis

The hierarchical agent converged rapidly, reaching a stable policy that consistently completes the task
within the step limit by episode 100, as reflected in the rise and plateau of success rates. Conversely, the
flat agent failed to converge to successful policies within the training horizon.

5.3 Success Rate and Policy Evaluation

Quantitatively, the hierarchical agent achieved a final success rate of 93%, successfully navigating to the
goal in most episodes during late training stages. The flat agent only reached the goal in 0% of episodes.

4



Special Interest Group on Artificial Intelligence Research (SIGAIR)

This stark difference illustrates the effectiveness of hierarchical decomposition in facilitating learning and
exploration in structured tasks.

5.4 Discussion

The experimental results substantiate our hypothesis that hierarchical reinforcement learning accelerates
convergence and yields higher-quality policies in navigation tasks with sparse rewards. By leveraging
subgoal selection, the hierarchical agent decomposes the complex task into manageable subtasks, simpli-
fying exploration and credit assignment.

The flat agent’s poor performance highlights the limitations of monolithic policy learning in environ-
ments with long horizons and sparse rewards. Furthermore, the hierarchical design’s use of temporally
extended actions enables more efficient planning and state abstraction, consistent with prior findings in
HRL literature [1].

These insights suggest that even in simple environments, structured hierarchies significantly improve
learning outcomes. This strengthens the argument for adopting HRL frameworks in real-world problems
with inherent task hierarchies.

6. Conclusion and Future Work

In this paper, we investigated the impact of hierarchical decomposition on reinforcement learning perfor-
mance in a toy navigation task. Our proposed two-level hierarchical reinforcement learning agent, which
selects subgoals at a high level and executes navigation policies at a low level, was empirically demon-
strated to significantly outperform a flat RL baseline in terms of learning speed, convergence, and success
rates.

The hierarchical agent achieved a success rate of 93% after 300 training episodes, whereas the flat
agent failed to learn an effective policy within the same period. These results highlight the advantages of
hierarchical abstractions in addressing challenges related to exploration and credit assignment in sparse
reward settings.

Our study contributes an interpretable experimental comparison showcasing how hierarchical struc-
tures can accelerate learning and improve policy quality in simple but illustrative environments. This lays
a foundation for future research on multi-level hierarchy designs and automated subgoal discovery.

Future work will explore extensions such as deeper hierarchy levels, alternative subgoal representa-
tion methods, and evaluation on more complex or continuous environments. Investigating transferability
of hierarchical policies and integrating model-based components also represent promising directions to
enhance sample efficiency and generalization capabilities.

References

[1] A. G. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learning. Discrete
event dynamic systems, 13(4):341–379, 2003.

[2] P. Dayan and G. E. Hinton. Feudal reinforcement learning. Advances in neural information pro-
cessing systems, 5, 1992.

[3] T. G. Dietterich. Hierarchical reinforcement learning with the maxq value function decomposition.
Journal of artificial intelligence research, 13:227–303, 2000.

[4] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In International conference on machine learning,
pages 1861–1870. Pmlr, 2018.

5



Special Interest Group on Artificial Intelligence Research (SIGAIR)

[5] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. Journal of
artificial intelligence research, 4:237–285, 1996.

[6] S. Kapturowski, G. Ostrovski, J. Quan, R. Munos, and W. Dabney. Recurrent experience replay in
distributed reinforcement learning. In International conference on learning representations, 2018.

[7] J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics: A survey. The Interna-
tional Journal of Robotics Research, 32(11):1238–1274, 2013.

[8] S. Krishnan, R. Fox, I. Stoica, and K. Goldberg. Ddco: Discovery of deep continuous options for
robot learning from demonstrations. In Conference on robot learning, pages 418–437. PMLR, 2017.

[9] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum. Hierarchical deep reinforcement
learning: Integrating temporal abstraction and intrinsic motivation. Advances in neural information
processing systems, 29, 2016.

[10] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
Journal of Machine Learning Research, 17(39):1–40, 2016.

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learn-
ing. nature, 518(7540):529–533, 2015.

[12] S. Pateria, B. Subagdja, A.-h. Tan, and C. Quek. Hierarchical reinforcement learning: A compre-
hensive survey. ACM Computing Surveys (CSUR), 54(5):1–35, 2021.

[13] R. S. Sutton, A. G. Barto, et al. Reinforcement learning: An introduction, volume 1. MIT press
Cambridge, 1998.

[14] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

[15] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver, and K. Kavukcuoglu.
Feudal networks for hierarchical reinforcement learning. In International conference on machine
learning, pages 3540–3549. PMLR, 2017.

[16] J. Wöhlke, F. Schmitt, and H. van Hoof. Hierarchies of planning and reinforcement learning for
robot navigation. In 2021 IEEE international conference on robotics and automation (ICRA), pages
10682–10688. IEEE, 2021.

6


	Introduction
	Related Work
	Methodology
	Toy Navigation Environment
	Hierarchical Reinforcement Learning Agent
	Flat Reinforcement Learning Agent
	Training Protocols and Experimental Parameters
	Evaluation Metrics

	Experimental Setup
	Grid-world Environment Specifications
	Implementation Details
	Experimental Procedure and Data Collection

	Results
	Learning Curve Comparison
	Convergence Speed Analysis
	Success Rate and Policy Evaluation
	Discussion

	Conclusion and Future Work

