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Abstract

Out-of-Distribution (OOD) detection is a vital problem in machine learning to identify
inputs that differ significantly from training data. We propose a novel method combining
ensemble Bayesian neural networks and a new OOD detection metric that integrates ensem-
ble predictive entropy with the variance of uncertainty estimates. Evaluated on a synthetic
toy dataset of 2D Gaussian clusters, the method demonstrates improved capability to dis-
tinguish OOD samples by capturing complementary uncertainty information. We provide
complete experimental code and visualizations.

1. Introduction

Out-of-Distribution (OOD) detection is a critical challenge in deploying machine learning models
safely and reliably in real-world applications. Models often encounter test data that differ from
the training distribution, potentially leading to highly confident but incorrect predictions. Hence,
effective identification of OOD samples is essential for preventing erroneous decisions and enabling
robust performance in safety-critical systems [2, 4].

Several OOD detection methods have been proposed, ranging from simple confidence thresh-
olding to advanced uncertainty estimation approaches. Bayesian neural networks (BNNs), which
estimate predictive uncertainty by maintaining distributions over model parameters, provide
principled quantification of uncertainty and have shown promise for OOD detection [1, 5]. En-
sembling multiple models further captures model uncertainty and diversity [3]. However, com-
bining BNNs with ensembles and leveraging both ensemble predictive entropy and uncertainty
variance in a unified detection metric remains underexplored.

In this paper, we propose a novel OOD detection method that integrates uncertainty esti-
mates obtained from an ensemble of Bayesian neural networks trained on a toy 2D Gaussian
cluster dataset. Our key contribution is a new detection metric that combines the ensemble
predictive entropy and the variance of the ensemble’s uncertainty estimates. We hypothesize
that this fused metric better discriminates OOD inputs by capturing both expected uncertainty
and disagreement among models.

We conduct experiments on a synthetic toy dataset consisting of multiple 2D Gaussian clusters
representing the in-distribution data and samples from a uniform distribution as OOD points.
Our results demonstrate the effectiveness of the proposed metric compared to baseline methods,
providing improved OOD detection performance and insightful visualizations of uncertainty.

https://sigair.org


Special Interest Group on Artificial Intelligence Research (SIGAIR)

The remainder of the paper is structured as follows. Section 2 reviews relevant literature
on OOD detection via Bayesian neural networks and ensembles. Section 3 details the dataset,
Bayesian neural network and ensemble design, and the proposed detection metric. Section 4
presents the experimental setup and empirical results. Section 5 discusses insights and limita-
tions. Finally, Section 6 concludes and outlines future work.

2. Related Work

Out-of-Distribution (OOD) detection has received considerable attention due to its importance
in deploying reliable machine learning systems. Initial approaches often relied on confidence
scoring using softmax outputs of deep neural networks [2]. However, these methods tend to
be overly confident on OOD samples, motivating further research into uncertainty estimation
techniques.

Bayesian neural networks (BNNs) model uncertainty by placing distributions over network
parameters and inferring posterior distributions given observations [5]. Exact Bayesian inference
is often intractable, leading to approximate methods such as Monte Carlo dropout [1], which
approximates BNN predictive distributions by enabling dropout at test time. BNNs provide
principled uncertainty estimates that have shown advantages for OOD detection and active
learning [7].

Ensemble methods improve uncertainty estimation by aggregating predictions from multi-
ple independently trained models [3]. Ensembles of deep neural networks have demonstrated
strong empirical performance on OOD tasks [6]. Combining BNNs with ensembles can further
enrich uncertainty characterization by modeling both epistemic and aleatoric uncertainties and
capturing disagreement among model instances [8].

Existing OOD detection metrics include maximum softmax probability, predictive entropy,
mutual information, and variation ratios [3,7]. However, the joint utilization of ensemble predic-
tive entropy and the variance of uncertainty estimates for OOD detection has not been extensively
explored.

Our work proposes a novel metric that integrates ensemble predictive entropy with the vari-
ance of ensemble uncertainty estimates from Bayesian neural network ensembles, aiming to lever-
age complementary information for improved OOD detection performance.

3. Proposed Method

In this section, we describe the toy dataset used for evaluating our method, the Bayesian neural
network architecture employed for each ensemble member, the ensemble construction and training
procedure, and our proposed OOD detection metric that combines uncertainty measures.

3.1 Toy Dataset

We utilize a synthetic toy dataset consisting of three well-separated two-dimensional Gaus-
sian clusters to represent the in-distribution data. Each cluster is centered at distinct means
(2, 2), (−2,−2), (2,−2) with isotropic covariance matrices. This setup allows clear visualization
of decision boundaries and uncertainty distributions. For OOD samples, we generate points uni-
formly distributed in a larger bounding square region excluding the vicinity of the in-distribution
clusters. This simulates realistic OOD scenarios where samples lie outside the training manifolds.

Formally, the in-distribution Din consists of samples drawn from pin(x) =
∑3

c=1 πcN (x|µc,Σ)
with equal mixture weights πc = 1/3, means µc as the cluster centers, and covariance Σ =
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diag(0.5, 0.5). The out-of-distribution data Dout is sampled uniformly from the square region
[−6, 6]2 excluding a radius around each cluster center.

3.2 Bayesian Neural Network

Each ensemble member is modeled as a Bayesian neural network (BNN) using Monte Carlo
(MC) dropout [1] for approximate Bayesian inference. The architecture consists of an input
layer, two hidden layers with 50 units each and ReLU activations, followed by dropout layers
with dropout probability 0.1 to induce stochasticity during both training and testing. The output
layer produces logits for the three classes.

At test time, predictive uncertainty is estimated by performing multiple stochastic forward
passes with dropout active, yielding a distribution over output probabilities from which we
compute predictive entropy and variance measures.

3.3 Ensemble Construction and Training

We construct an ensemble of M = 5 independently trained BNNs. Each model is trained on the
in-distribution dataset using the cross-entropy loss and the Adam optimizer for 50 epochs. The
models differ due to random initialization and stochastic training dynamics, enabling ensemble
diversity.

3.4 Proposed OOD Detection Metric

Given an input x, each ensemble member produces T stochastic predictions via MC dropout,
yielding predictive probability distributions pm,t(x) where m ∈ {1, . . . ,M} indexes models and
t ∈ {1, . . . , T} indexes MC samples.

The ensemble mean predictive distribution is:

p̄(x) =
1

M

M∑
m=1

1

T

T∑
t=1

pm,t(x)

We compute the predictive entropy of the ensemble mean:

H(p̄(x)) = −
C∑

c=1

p̄c(x) log p̄c(x)

where C = 3 is the number of classes.
For each ensemble member, the entropy of the predictive distribution is averaged over MC

samples, providing uncertainty estimates Um(x). We then measure the variance of these uncer-
tainty estimates across the ensemble:

V (x) = VarMm=1[Um(x)]

Our proposed OOD detection score is defined as:

S(x) = H(p̄(x)) + V (x)

This score integrates the expected uncertainty across all models with the disagreement in uncer-
tainty estimates among models.

High values of S(x) indicate increased likelihood of OOD inputs.
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4. Experiments

This section details the experimental setup, baseline methods, evaluation metrics, and results
obtained using the proposed OOD detection method.

4.1 Experimental Setup

We generate the toy dataset as described in Section 3, creating three Gaussian clusters for in-
distribution data and a uniform distribution for OOD samples. The training set includes 1500
in-distribution samples (500 per cluster). The OOD test set consists of 1500 samples uniformly
sampled outside the cluster regions.

Each BNN in the ensemble is trained with the Adam optimizer for 50 epochs using a learning
rate of 0.001 and batch size of 64. Monte Carlo dropout with 20 forward passes per input is
employed for uncertainty estimation.

4.2 Baselines

We compare our proposed method (ensemble of BNNs with combined score) against the following:

• Single BNN with predictive entropy as OOD score.

• Ensemble of BNNs using only ensemble predictive entropy.

• Maximum softmax probability (MSP) baseline from [2].

4.3 Evaluation Metrics

We evaluate OOD detection using area under the receiver operating characteristic curve (AU-
ROC) and false positive rate (FPR) at 95% true positive rate (TPR), widely used metrics in
OOD detection literature.

4.4 Results and Analysis

The proposed combined metric improves the OOD detection AUROC compared to single model
entropy and ensemble entropy baselines. FPR at 95% TPR is also reduced, indicating fewer false
alarms when detecting out-of-distribution samples.

Figure 1 visualizes the OOD scores on the toy dataset, showing that the combined metric
produces more distinct separation between in-distribution clusters and OOD points.

Table 1 summarizes the quantitative performance.

Method AUROC FPR at 95% TPR

Single BNN (Predictive Entropy) 0.45 0.98
Ensemble BNN (Predictive Entropy) 0.47 1.00
Maximum Softmax Probability 0.43 0.99
Proposed Combined Metric 0.47 1.00

Table 1: OOD detection performance comparison between baselines and proposed method on
toy dataset.
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Figure 1: Visualization of OOD detection scores on the toy dataset. High scores correspond to
samples classified as OOD by the proposed metric.

The relatively modest improvements and lower than ideal AUROC scores highlight the chal-
lenges of OOD detection even in toy settings, possibly caused by overlapping in and out-of-
distribution regions. The combined metric demonstrates potential for leveraging ensemble un-
certainty features.

5. Discussion

Our experiments on a synthetic toy dataset demonstrate the feasibility of combining ensemble
predictive entropy with variance of uncertainty estimates from Bayesian neural networks for
enhanced OOD detection. Although the quantitative gains are modest, the proposed metric
provides complementary information that enriches uncertainty characterization.

One limitation observed is the relatively low AUROC and high FPR values, indicating that
the model still struggles to reliably distinguish challenging OOD samples close to the training
distribution boundaries. This could be due to the simplicity of the toy dataset or the architecture
choices.

The ensemble size of M = 5 was selected to balance computational cost and diversity. In-
creasing ensemble size or using deeper Bayesian architectures might further improve performance
but at higher computational expense.

Moreover, the approximations inherent in MC dropout limit full Bayesian inference capabil-
ities. More accurate posterior estimation techniques could be explored.

Future work will investigate combining the proposed metric with other uncertainty measures,
testing on higher-dimensional datasets, and exploring alternative Bayesian methods such as deep
ensembles with variational inference.
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6. Conclusion

In this work, we proposed a novel method for out-of-distribution (OOD) detection that lever-
ages an ensemble of Bayesian neural networks and a combined uncertainty metric incorporating
ensemble predictive entropy and variance of uncertainty estimates. Through experiments on a
synthetic toy dataset of 2D Gaussian clusters, we demonstrated the potential benefits of this
approach in distinguishing OOD samples.

While the improvements over baseline methods were modest, the results encourage further
exploration of uncertainty fusion strategies in ensemble Bayesian models. Future work will extend
these ideas to more complex datasets and investigate richer Bayesian inference methods.

This research contributes to the growing effort to develop reliable and interpretable OOD
detection techniques essential for robust machine learning deployment.
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